
A nominal response is a verbal label. Asking for a nom-
inal response is often the natural way to elicit an opinion. 
The mechanic making a diagnosis, the potential purchaser 
choosing a brand, and the possibly prejudiced person ex-
pressing a preference are likely to be thinking of a label 
as they consider their response. Actions that people intend 
or report having executed are also expressed nominally. In 
survey research, nominal responses arise frequently.

Experimentalists, on the other hand, generally try to 
avoid tasks that generate nominal data. In the laboratory, 
a familiar task may be altered so that numerical data can 
be provided. For example, suppose an investigator wants 
to study how physicians evaluate hypothetical patients 
whose symptoms are varied systematically. So that the 
judgments can be expressed numerically, the physician 
might be asked to predict how many months the patient 
can be expected to survive, or the probability that the pa-
tient will survive until a particular point in time. Although 
the latter judgments are medically pertinent, they are more 
complex than merely identifying the disease and, perhaps, 
recommending a regimen, tasks that arise routinely in 
medical practice.

To be sure, experimenters have been trained to gather 
numerical data for good reasons. Numerical data provide 
more information and more analytic power than do nomi-
nal data. Quantitative theories are more interesting than 
qualitative ones, and it seems obvious that numerical data 
are needed to test a quantitative theory. Simply reporting 
nominal responses may pose a challenge. How are they to 
be aggregated? Can nominal data supply more informa-
tion than can be summarized by a table of frequencies?

Perhaps no single writer has had more influence on the 
data-gathering proclivities of behavioral researchers than 

S. S. Stevens (1946, 1951). His discussions of the con-
straints placed on statistical operations by the scale prop-
erties of the responses, although vigorously challenged 
(e.g., Anderson, 1961; Lord, 1953), still lead experimen-
talists largely to restrict nominal data to the demographics 
section of their reports. Even if a researcher were willing 
to ignore Stevens’s proscription, nominal data do not seem 
suitable for sophisticated experimental work. The elegant 
factorial designs to which experimenters apply ANOVAs 
require numerical data. Yet there are many tasks for which 
nominal responses are the most appropriate, and requir-
ing subjects to use other modes smacks of the carpenter 
who pounds in screws because the only available tool is 
a hammer.

In this article, I present a method for analyzing nominal 
responses collected using factorial designs. The goal is to 
allow the analytic power afforded by factorial designs to 
be extended to studies in which nominal responses are the 
natural way to express a person’s actions or judgments. 
That is, I echo Keppel’s (1991) assertion that the intimate 
connection between design and analysis is conducive to 
the conceptualization of incisive studies.

Of course, nominal responses do not exhibit variance 
in the usual sense, since there is no metric that can sup-
port measures of distance. One cannot say by how much 
two nominal responses differ. Still, it is possible to in-
voke the concept of disparity between responses, in that 
two responses either match or do not match. The pro-
posed analysis features an orthogonal partitioning of the 
potential pairwise matches generated by the experimen-
tal design. This partitioning corresponds to the orthogo-
nal partitioning of sums of squares characteristic of the 
ANOVA.
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generates a difference of 0, and a pair that does not match 
generates a difference of 1. Gini defined the sum of squares 
for the set of n responses to be the sum over all pairs of 
the squared differences divided by 1/2n. Gini’s definition 
is related to the NANOVA’s proportion of nonmatches. 
Because Gini cleverly chose 0 and 1 as the seemingly ar-
bitrary constants for describing matches and nonmatches 
(02 5 0 and 12 5 1), Gini’s sum of squares increases as the 
proportion of nonmatches increases.

Light and Margolin (1971) built a true ANOVA pro-
cedure for categorical data on Gini’s (1939) definition, 
partitioning the total sum of squares into between and 
within terms. They compared their F tests to equivalent 
chi-square contingency statistics and found the former to 
be more powerful under some circumstances. Onukogu 
(1985) also constructed an ANOVA for nominal data, but 
his sums of squares incorporate a slightly different divi-
sor than do those of Gini and of Light and Margolin. Both 
of these published analyses were illustrated with a large 
data set.

The NANOVA’s key quantities, the NPs, are members 
of the same family as Gini’s (1939) sum of squares but 
do not yield F ratios. The Light and Margolin (1971) and 
Onukogu (1985) procedures are presented for designs with 
only one substantive factor. The NANOVA is more gen-
eral, allowing for multiple factors (which may be crossed 
or nested) and providing estimates of main effects and 
interactions.

Multiway contingency analyses (Goodman, 1971; 
Shaffer, 1973) also apply factorial decomposition to 
nominal responses and may be seen as competitors to the 
NANOVA. In this multifactor generalization of traditional 
chi-square tests of independence, all of the classifications 
have equivalent status. On the other hand, the NANOVA 
distinguishes between its dependent variable and its inde-
pendent variables. From the experimentalist’s standpoint, 
this distinction is meaningful, which is one reason why 
the ANOVA continues to thrive despite Cohen’s (1968) 
demonstration that equivalent insights can be extracted 
from multiple regression.

Other competitors include loglinear analysis (Agresti, 
1990) and multinomial logit analysis (Grizzle, 1971; 
Haberman, 1982; McFadden, 1974). Although the lat-
ter procedure is applicable to choices among factorially 
composed stimuli, it is considerably more opaque and en-
tails distributional assumptions that the NANOVA avoids. 
However, the NANOVA analysis allows for free respond-
ing as well as multiple choice using preset options. Re-
moving the constraint threatens to yield data matrices 
featuring unique responses or empty cells, both of which 
pose problems of estimability for these generalized linear 
models (Fienberg, 2000).

The Statistical Model
Bock (1975) proposed a multinomial model as plau-

sible for nominal data, viewing a response as a random 
variable that assumes an integer value j with probability 
pj. Responses are presumed to be independent. The bi-
nomial model is a special case of the multinomial model 
used for dichotomous responses, where j takes on one of 

Nominal Analysis
The fundamental statistic in the proposed nominal 

ANOVA (Nanova) is the Nanova proportion (NP). 
For main effects, NP is the proportion of nonmatches, 
calculated by comparing obtained and potential matches 
associated with a source. The algebraic expression for the 
proportion is (potential 2 obtained)/potential. The number 
of potential matches associated with each of the sources is 
inherent in the design structure. The correspondence be-
tween the NANOVA and the ANOVA is evidenced by the 
fact that the number of potential matches for each source 
is the product of the source’s df and one half the total num-
ber of stimulus combinations. Thus, for a design with four 
levels in Factor A, three levels in Factor B, and two levels 
in Factor C, the number of potential matches associated 
with Factor A is 3 (5 the df for A) 3 12 (5 1/2 3 4 3 
3 3 2) 5 36. The number of potential matches for the BC 
interaction is 2 3 1/2 3 4 3 3 3 2 5 24. The number of 
obtained matches is an empirical outcome. Every poten-
tial match is assigned to a unique source; this is the sense 
in which the partitioning is orthogonal.

The rationale for placing nonmatches (the complement 
of obtained matches) in the numerator of the NP is that 
when responses to the various levels of a factor are the 
same (the nominal version of the usual null hypothesis), 
that factor does not affect the response. Accordingly, the 
obtained proportion of nonmatches ought to be small if 
that null hypothesis is true. NPs range between 0 and 1 
and are analogous to effect sizes.

Significance questions are addressed in the NANOVA 
table. NPs play a role similar to that of mean squares in 
the ANOVA, in that they are combined in a ratio format 
to yield the test statistic, the N ratio. The N ratio com-
pares the NP for a substantive source with the NP for the 
error term associated with that source. The selection of 
the error term for a source follows the traditional rules of 
the ANOVA. It should be noted that although proportions 
play a key role, the NANOVA is not a factorial analysis of 
proportions as presented by Dyke and Patterson (1952). 
The data they analyzed were proportions, whereas the data 
for the NANOVA are individual responses.

Because there are no underlying distributional assump-
tions, significance tests on N ratios are carried out using a 
resampling procedure (Edgington & Onghena, 2007). The 
observed scores are randomly permuted without replace-
ment (Rodgers, 2000) a “large” number of times; I use 
100,000 as the default large number. After each permuta-
tion, N ratios for each substantive source are calculated. 
The proportion of times the N ratio derived from permuted 
data exceeds the N ratio from the original data is an esti-
mate of the probability of obtaining an N ratio at least that 
large, given that the null hypothesis is true, thereby corre-
sponding to a p value in the ANOVA. The logic is that the 
resampled data were not truly generated by the factors, so 
any patterns emerging in the proportions were fortuitous.

Antecedents
A definition of variance for nominal data was first pro-

posed by Gini (1939), who suggested examining all n2 
pairs of ordered responses in a set. A pair that matches 



Nominal Analysis        903

that the analyses capture the different effects I built into 
the data. Then I will show a one-way, independent groups 
design and compare the analysis with a conventional con-
tingency table analysis, using a chi-square test. The last 
example, a two-factor independent groups design, will il-
lustrate how the NANOVA handles interaction. Additional 
examples, including one featuring a mixed design with 
a nested subjects factor, are posted at www.davidjweiss 
.com/NANOVA.htm.

Although one can count matches manually, the process 
becomes mind-boggling as the designs get larger and/or 
more complex. I recommend use of the NANOVA com-
puter program,1 which also handles the resampling. The 
number of resampling repetitions is an option within the 
program; using the default value of 100,000, none of the 
analyses took more than 1 min on a Core 2, 2.0-GHz 
computer. However, larger designs can take consider-
ably longer. The program reports degrees of freedom in 
the NANOVA table to maintain correspondence with the 
ANOVA, but dfs are not involved in the computations.

The NANOVA tables in the examples highlight the 
most important practical advantage of the new technique. 
The structure built into the study comes through in a man-
ner that is familiar to experimentalists. This clarity is es-
pecially valuable for designs with multiple factors. The 
results look like ANOVA tables, and the contributions of 
the factors are interpreted in much the same way.

Example 1: Repeated measures design. In Tables 1 
and 3, the (fictional) data are clinical diagnoses made by 
medical students. The responses are unconstrained, in that 
no set of possible diseases from which to choose was pro-
vided. The students named the disease (here, signified by 
the letters a, b, c, or d) they attributed to a patient who 
had the designated set of symptoms. This is a 4 (symptom 
sets) 3 5 (medical students) repeated measures design. 
Whereas in typical studies that examine diagnosis, the 
outcome measure is likely to be accuracy, here we explore 
the process question of how variation in the symptoms in-
duces variation in the diagnoses. The data in Table 1 were 
constructed to show a symptom effect. That is, the medical 
students generally agreed on the diseases suggested by the 
symptom sets.

The overall number of potential matches is always the 
combination of the number of responses taken two at a 
time. There are 190 (20C2) potential matches generated 
by the 4 3 5 design; 41 occurred. Main effects are as-
sessed by counting the matches within a row (column). 
The more matches that occur, the less effect that vari-

two possible values. For categorical responses where there 
are more than two options, j takes on a range of values 
equal to the number of categories. The pjs are estimated 
with response proportions. A link function, whose contri-
bution is to address how randomness imposes its effect, 
determines the particular flavor of the model.

The model proposed for the NANOVA is based on the 
most widely used of the multinomial models, the multino-
mial logit model. This model has historical roots in Luce’s 
(1959) general model of choice, in which it is assumed 
that individuals act rationally to maximize utility. Choices 
were assigned a random element, because they were held 
to be dependent on random utilities. McFadden (1974) 
made the connection explicit, modeling expected utilities 
on attributes of the stimulus options. An additional layer 
of complexity, allowing for repeated measures and thus 
extracting information about individual respondents, was 
introduced by Jain, Vilcassim, and Chintagunta (1994). 
I present the model equation using the notation of Chen 
and Kuo (2001):
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The equation describes the probability that the ith sub-
ject will choose alternative j as the response yit at the tth 
opportunity, having been exposed to the multidimensional 
vector xit, which constitutes the current stimulus combi-
nation. In specifying the model, zitj is the known design 
vector. The vector of unknown random effects, ui, which 
is conditional on the ith subject, is assumed to be indepen-
dent and identically distributed according to a multivariate 
normal distribution. In the Chen and Kuo (2001) formula-
tion, J represents the fixed number of choices available. 
For the NANOVA, J should be interpreted as the number 
of responses actually observed; αj and β are parameters to 
be estimated from data.

Because fitting is not part of the NANOVA procedure, 
the value of the model is primarily heuristic. In utilizing 
a randomization test, the NANOVA can bypass the distri-
butional assumption of multivariate normality and avoid 
consideration of asymptotic properties. Accordingly, large 
samples are not required, although large samples might 
be expected to convey the usual benefits of stability and 
power.

Examples
I will use fictional experiments and artificial data to il-

lustrate the kinds of studies for which the NANOVA might 
be suitable and how the matches are assigned to sources. 
In the illustrations, I will use single letters as the responses 
to simplify the presentation; but the responses could as 
well be words spoken or written by respondents, or they 
might be verbal descriptions of actions. I first will show 
two repeated measures analyses using the same design, 
with data constructed to show a stimulus effect in the first 
example and a subject effect in the second. These results 
will serve as a check on the validity of the NANOVA, in 

Table 1 
Diagnoses (Artificial Data Constructed  

to Show Symptom Effect)

Medical Symptom Symptom Symptom Symptom
 Student  Set 1  Set 2  Set 3  Set 4  

1 a b b c
2 b a c d
3 a b d c
4 a c b d

 5  a  b  c  d  
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In the resampling analysis, the proportion of times the 
N ratio from permuted data exceeded the N ratio obtained 
from the original data (2.80) was .055, corresponding to a 
p value of .055 in an ANOVA. According to standard null 
hypothesis-testing logic, these results are consistent with 
the null hypothesis at the .05 level of significance; the 
page does not affect the purchase.

The usual way in which data suitable for a one-way, 
independent groups NANOVA are analyzed is with a chi-
square test of independence. In Table 7, the data from 
Table 5 are displayed in a contingency table, wherein the 
entries are the number of people who bought a particular 
product after seeing a particular page. The null hypoth-
esis for the chi-square test of independence is logically 
equivalent to that of a one-way NANOVA. Table 7 appears 
rather sparse, because this mode of presentation is poorly 
suited to the structure of the data set, in that some products 
were never chosen in response to particular pages. Con-
sequently, the data may be inappropriate for a standard 
chi-square test of independence (a topic debated intensely 
60 years ago; see, e.g., Lewis & Burke, 1949). Ignoring 

able has. To address the symptom effect, we examine the 
30 (5  4C2) potential matches across rows, of which 1 oc-
curred. Matches within columns are associated with medi-
cal students, which is the subjects source in this study. 
There are 40 (4  5C2) potential matches within columns; 
15 occurred. Matches relevant to interaction are those not 
associated with either row or column. More specifically, 
interaction comparisons are those for which the cell in-
dices for the pair both differ (e.g., 11 vs. 22, 21 vs. 12, 
31 vs. 12, etc.). The more of those matches that occur, the 
greater the interaction. Therefore, the NP for an interac-
tion is the proportion of matches, rather than the propor-
tion of nonmatches.

The subject 3 treatment interaction is the usual error 
term in a repeated measures ANOVA. There are 120 of 
these pairs in the 4 3 5 design; matches occurred 25 times. 
Because we know the total number of potential and actual 
matches, those numbers used for the error term might also 
have been derived by subtraction (potential matches 5 
190 2 30 2 40; actual matches 5 41 2 1 2 15). The ob-
tained N ratio is formed by comparing the NPs as though 
they were mean squares in an ANOVA. As is shown in 
Table 2, the N ratio of 4.64 and the p value of .021 capture 
the symptom effect that I built into the data.

In contrast, the data in Table 3 were constructed to 
show a subject effect. Each medical student tends to give 
an idiosyncratic diagnosis without much regard for the 
symptoms.

This time, the N ratio for symptoms is smaller and non-
significant, reflecting the pattern I built into the data.

Thus, the NANOVA analyses shown in Tables 2 and 4 
detect what was built into the data. In Table 2, where sub-
jects interpret the differential symptom information in 
much the same way, the N ratio for symptoms is “large.” 
In Table 4, subjects tend to respond the same way regard-
less of the symptoms, and correspondingly, the N ratio for 
symptoms is “small.” This difference is perhaps the stron-
gest evidence for the promise of the proposed technique, 
in that the N ratio is responsive to effects in the data.

Example 2: Independent groups design. In the ex-
periment reported in Table 5, 16 buyers saw one of four 
Web pages and then purchased product a, b, c, d, e, or 
nothing (after Fasolo, McClelland, & Lange, 2005). This 
is a one-way, independent groups design with four scores 
per cell. The null hypothesis is that what was purchased 
does not depend on which page the buyer saw; the alter-
native hypothesis is that the page does influence the pur-
chase. Of course, with nominal data, hypotheses are never 
directional. The hypothesis is tested by comparing the NP 
for pages to a within-cells error term.

Over this set of 16 responses, there are 120 potential 
matches (16C2). Twenty-three matches occurred. The po-
tential and obtained matches are partitioned according to 
the factorial structure. Across Web pages, there are 24 po-
tential matches (4  4C2), of which 3 occurred. Therefore, 
there are 21 nonmatches, yielding an NP of 21/24 5 .875. 
The remainder of the potential and observed matches 
are allocated to the within-cells error term.2 Here, N 5 
.875/.313 5 2.80 (see Table 6).

Table 2 
Nominal ANOVA, One-Way Repeated Measures  

Design (Artificial Data)

Source  df  Potential  NP  N Ratio  p

Medical student (M) 4 40 .625
Symptom (S) 3 30 .967 4.64 .021
M 3 S 12 120 .208

Note—Potential matches, 190; obtained matches, 41.

Table 3 
Diagnoses (Artificial Data Constructed to Show Subject Effect)

Medical Symptom Symptom Symptom Symptom
 Student  Set 1  Set 2  Set 3  Set 4  

1 a a b a
2 b b b c
3 d c c c
4 d d d d

 5  a  b  a  a  

Table 4 
Nominal ANOVA, One-Way Repeated Measures  

Design (Artificial Data)

Source  df  Potential  NP  N Ratio  p

Medical student (M) 4 40 .850
Symptom (S) 3 30 .400 2.82 .999
M 3 S 12 120 .142

Note—Potential matches, 190; obtained matches, 41.

Table 5 
Product Purchased (Artificial Data)

 Page 1  Page 2  Page 3  Page 4  

a c none a
b a b a

none b d a
 d  e  b  a  
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and intermediate values capture the extent to which non-
identical responses overlap in meaning.

The Exchangeability Assumption
An important assumption underlying randomization 

tests is exchangeability. In the NANOVA application, all 
observations are held to be exchangeable. In particular, 
in repeated measures designs, one cannot restrict the ex-
changes on a subject by subject basis. If the responses 
made by each subject are exchanged separately, the num-
ber of matches for a subject does not change, and so the 
NP term for subjects does not change. The resampling 
routine allows all responses to be interchanged.

Explorations of Stability
The stability of the p values produced by the NANOVA 

was explored by systematically varying the number of 
randomizations used for an analysis. I conducted 1,000 
separate analyses of the Table 5 data, successively employ-
ing 10,000, 50,000, and 100,000 randomizations for each 

that concern, I calculated the chi-square observed as 18.0. 
With 15 dfs, the corresponding p value is .26, illustrating 
a power advantage for the NANOVA in this case.

Example 3: Two-factor independent groups design. 
Table 8 illustrates a two-factor (3 programs 3 2 grades), 
independent groups design with four scores per cell. In 
this study, sixth-grade children who had earned either “A” 
or “C” grades in science last year were assigned to write 
a synopsis of a specific television program that they were 
asked to watch. The programs, all featuring scientists of 
a sort, were shown at 10 p.m. and were not normally seen 
by these young viewers. One week later, all of the students 
were asked to list three careers that they were consider-
ing. The children’s first responses were examined to see 
whether the program assignment differentially influenced 
career consideration and whether this effect depended on 
the child’s previous success in science. In this case, the 
responses are careers.

Each of the 276 (24C2) potential matches generated by 
the design is associated with exactly one of the sources. 
The results are shown in Table 9. The student’s grade had 
the largest effect on career choice, but none of the three 
sources affected the choice significantly.

For the substantive sources, we count matches among 
corresponding pairs of responses. For the main effect of 
program, we count across rows. There are 15 matches 
among the 24 comparisons. For the main effect of grade, 
we count matches down columns; there is only 1. The null 
hypothesis for a NANOVA interaction is that the response 
distribution across the levels of one factor does not differ 
over the various levels of the other factor. The test checks 
for matches among cells that are not in the same row or 
column. Two such matches occurred.

Preprocessing the Data
Carrying out a NANOVA requires decisions about 

whether each pair of responses matches. The simplistic 
interpretation of matching is that the responses must be 
identical. When constrained response options are offered, 
that determination is easy to accomplish and can be left to 
a computer. However, when free responding is permitted, 
the researcher may have to judge whether a pair of non-
identical responses ought to be counted as a match.

Declaring linguistic equivalents as matches seems in-
nocuous. If two different words are true synonyms, the 
analyst may enter one of them both times. The use of 
different languages by respondents also justifies substi-
tution. A more delicate judgment is required when one 
response is effectively a subset of another. For example, 
during a study examining the effectiveness of automobile 
advertising, the subject may be asked to name the kind of 
car he or she wants to buy. If the response is “Camry,” is 
that a match with “Toyota”? “Camry” is certainly closer 
to “Toyota” than it is to “Ford.” The researcher will have 
to make a decision. Such fuzzy matches were explored by 
Oden (1977), who asked people to judge, for example, the 
extent to which a bat is a bird. It may be feasible to devise 
a generalization of the NANOVA that incorporates degree 
of closeness, where 0 means no match, 1 means identical, 

Table 6 
Nominal ANOVA, One-Way Independent Groups  

Design (Artificial Data)

 Source  df  Potential  NP  N Ratio  p  

Pages 3 24 .875 2.80 .055
Within 12 96 .313

Note—Potential matches, 120; obtained matches, 23.

Table 7 
Product Purchased 3 Page (Same Artificial Data As in Table 1)

 Product  Page 1  Page 2  Page 3  Page 4  

a 1 1 0 4
b 1 1 2 0
c 0 1 0 0
d 1 0 1 0
e 0 1 0 0

 none  1  0  1  0  

Table 8 
Career Choices Among Sixth Graders (Artificial Data)

Program

 Grade  ER  CSI  NUMB3RS  

“A” a a b a a b
a a a a a a

“C” c c c d d c
   c c  a c  c d  

Table 9 
Nominal ANOVA, Two-Way Independent Groups  

Design (Artificial Data)

Source  df  Potential  NP  N Ratio  p

Program (P) 2 24 .375 0.54 .999
Grade (G) 1 12 .917 1.33 .146
P 3 G 2 24 .083 0.12 1.000
Within 18 216 .690

Note—Potential matches, 276; obtained matches, 87.
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Explorations of Responsiveness
The responsiveness of the NANOVA analysis to the 

magnitude of effects in the data was examined by ma-
nipulating data structured in accord with Table 5. Each 
column had a unique modal response, capturing the idea 
that a page drew shoppers to a specific brand. In the first 
case, two of the four responses in each column were the 
same, with the other two different from them and from 
each other. That is, the first column contained a, a, b, c; the 
second column contained b, b, c, d; and so on. In the sec-
ond case, the page had a stronger effect. Three of the four 
responses in each column were the same, with the fourth 
response different (a, a, a, c; b, b, b, d; etc.). In the third, 
most extreme case, all of the responses in the first three 
columns were the modal brand, whereas three of the four 
responses in the fourth column were the same and the last 
was different (a, a, a, a; . . . ; d, d, d, e). The N ratio for the 

analysis. The program reported individual p values to the 
third decimal place. Under all three conditions, the mean 
of the distribution was .060. As would be expected, the 
standard deviation decreased as the number of random-
izations increased but differed only in the third decimal 
place. Given that all three conditions employed “large” 
numbers of randomizations, the similarity in these results 
is not surprising. However, dramatic differences appear 
when we examine the distributions graphically in the his-
tograms displayed in Figures 1, 2, and 3. Using bin widths 
of .002, the modal p value of .059 was achieved 172 times 
when 100,000 randomizations were used to estimate each 
p value, but the modal value of .057 was achieved only 86 
times when 10,000 randomizations were used. The more 
sharply peaked distribution seen in Figure 3 provides jus-
tification for using 100,000 randomizations as the default 
in the NANOVA computer program.

10,000 Randomizations
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Figure 1. Distribution of 1,000 resampled p values using data from Table 5, 
with each p value based on 10,000 randomizations. M 5 .060, SD 5 .010.
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Figure 2. Distribution of 1,000 resampled p values using data from Table 5, 
with each p value based on 50,000 randomizations. M 5 .060, SD 5 .007.
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gesting less power for the numerical data. The resolution 
is that the advantage of numerical responses is that al-
though they are inherently more sensitive to fine distinc-
tions respondents may make, my substitution was linked 
to distinctions that had already been made using nominal 
responses. So, notwithstanding the inappropriateness of 
this mode of comparison, the result does suggest that the 
NANOVA is not an inherently weak test.

Power will be affected by the variety of responses the 
subject chooses. If only a few alternatives are exercised, 
there will be many matches. In some circumstances, the 
number of alternatives used will depend on the subject’s 
verbal habits or base rates for particular response options. 
If we are studying actions, the situation itself may con-
strain the number of plausible options.

Power also depends on the statistical test employed. Pe-
sarin and De Martini (2002) observed that the power of a 
permutation test depends on the population distribution. 
Customary power computations entail assumptions about 
that distribution. Little information about the distribution 
of freely emitted nominal responses is currently available. 
As such knowledge accrues, it may be feasible to make 
assumptions that support power analyses useful to an ex-
perimenter during the design of a study.

Discussion
An intriguing methodological possibility offered by 

the NANOVA procedure is parallel assessment, by which 
I mean studies that collect numerical and behavioral re-
sponses to the same stimuli. This is really an old idea, 
going back at least to a classic study in which LaPiere 
(1934) compared racial attitudes expressed by, and ac-
tions taken by, Southern innkeepers. One might examine 
how medical warnings varying in length and intensity 
affect the patient emotionally and, at the same time, see 
whether the same factors inspire behavioral change. 
Studies of training might look at how instructional in-
novations affect both knowledge and choice of action. 

first case, a baseline weak effect, was 2.91, with a p value 
of .219. The second case mimicked a strong effect, and 
the NANOVA duly reported an N ratio of 5.33 ( p  .001). 
The third case was as strong an effect as possible (without 
generating an infinite N ratio), and the N ratio was 32.00 
( p  .001). This demonstration shows that for a small data 
set, the NANOVA is not sensitive to weak effects but does 
detect stronger ones in accord with their magnitude.

Power Considerations
It seems obvious that nominal data afford less power 

than do numerical data, but how much less? To gain a foot-
hold, I tried two exercises to examine how power in the 
NANOVA context compares with power in the ANOVA. 
When the data are homogeneous, one would expect power 
to increase with the size of the data set. To test this pre-
diction, I increased the size of the data set in Table 5 by 
duplicating the responses repeatedly. With one duplication 
(df 5 3,28; potential and obtained matches 5 496, 108), 
the N ratio increased to 3.11. With two duplications (df 5 
3,44; potential and actual matches 5 1,128, 255), N was 
3.21. With three duplications (df 5 3, 60; potential and 
actual matches 5 2,016, 464), N was 3.26. The latter three 
N ratios all yielded a p value of .001. In this exercise, the 
power gain from replication was achieved entirely from 
increases in the proportion of nonmatches in the within 
term, because with perfectly replicated responses the 
proportion of nonmatches associated with pages remains 
constant.

The other slant on power compared numerical responses 
with nominal responses. One would expect numerical data 
to afford more power. I computed an ordinary F ratio after 
replacing the letters in Table 5 with their ordinal positions 
in the alphabet and the “none” responses with zeros. If 
the study had been a real one, the numbers might repre-
sent time spent looking at the page or amount of money 
spent after viewing it. The comparison is via the p values. 
To my surprise, the p value was much higher (.564), sug-
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Notes

1. The NANOVA computer program is available for free download 
from www.davidjweiss.com/NANOVA.htm. The Windows program 
handles designs with as many as four factors, including subjects or rep-
licates. The Web site also features screen shots illustrating design speci-
fication and data entry.

2. The NANOVA computer program constructs the within-cells error 
term by pooling what would have been the subjects source along with all 
interactions involving subjects if a repeated measures design had been 
employed. Accordingly, for a given set of responses, the program gener-
ates the identical NANOVA table for an independent groups design as it 
does for a repeated measures design in which subjects are nested under 
all substantive factors. This correspondence is a property of the ANOVA 
as well (Weiss, 2006).

(Manuscript received August 12, 2008; 
revision accepted for publication March 4, 2009.)

Nominal responding is the natural mode for expressing 
a choice, and the study of what underlies choices can 
perhaps best be accomplished with the analytic power of 
factorial designs.

The addition of the NANOVA procedure fills a hole 
in the experimenter’s toolbox. The extant techniques for 
dealing with nominal responses are suited to the structure 
found in nature, but they do not take full advantage of the 
factorial structure that one can establish in the laboratory. 
Just as the ANOVA maintains its value even though it is, in 
a sense, subsumed by multiple regression (Cohen, 1968), 
so the NANOVA can be useful even though multinomial 
logit analysis may be applicable to the same data. The 
NANOVA analysis is conceptually simpler, makes fewer 
assumptions, and generates familiar inferences about the 
efficacy of the factors built into the study.

Nominal data are inherently less informative than quan-
titative data. Nominal data cannot be averaged, cannot be 
graphed, and do not convey information about the mag-
nitude of differences. Because averaging is a meaningless 
operation, it is not clear how to deal with missing data or 
inequality of cell sizes. However, nominal responses are 
the natural mode for capturing actions, and a science of 
behavior ought to be able to make use of them. Despite 
Stevens’s (1946, 1951) negative view, likely based on 
his prophysics, antipsychology biases (Matheson, 2006), 
nominal data can provide valuable information in experi-
mental settings.
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